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SOME RESULTS ON CONTINUED FRACTIONS OF ORDER
THIRTY-TWO

SHRADDHA RAJKHOWA® AND NIPEN SAIKIA

ABSTRACT. Chetry and Saikia (2021) derived four continued fractions of order
thirty-two from a general continued fraction identity of Ramanujan, and proved
some theta-function and modular identities. In this paper, we prove some new
theta-function identities for the four continued fractions and derive partition-
theoretic results by using colour partition of integers. We establish general theo-
rems for finding explicit values of the continued fractions by using theta-function
identities and give examples. We also obtain some vanishing coefficient results for
the continued fractions with the help of dissection formulas.
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1. Introduction

Throughout the paper, for |¢| < 1 and any complex number a, we use the notation

o0
(1) (@:0)s =[] (1 = aq").
t=0
For brevity, we often write
(013 9)o0(a25 €)oo (A3; @)oo+ * (A3 @)oo = (a1, 02,03, - -+, Am; @)y -

Ramanujan’s general theta-function f(a,b) [2, p. 34, (18.1)] is defined by
(2) fla,b) = > @ THDREENEgp) < 1.
t=—o00
Three important special cases of f(a,b) [2, p. 36, Entry 22 (i)-(iii)] are given by
S (4% 4%)5%

(3) o(q) =fla.0)= > ¢ = (

4 9)%(q* ¢

t=—00

- (¢% 63
4 U(q) =g, q*) =D ¢V = =5
(4) (9) :==7(q,9°) ; @0
(5) F=a) =h-a,—) = Y (D' = (g:9),

t=—00
respectively. It is also useful to note here that
(4:9)%

6 _g) = 2 1joo
©) =9 (4% %)

*Corresponding author.
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Also, in terms of f(a, b), Jacobi’s triple product identity [2, p. 35, Entry 19] can be
stated as

(7) fla,b) = (—a; ab)oo(—b; ab) o (ab; ab) oo = (—a, —b, ab; ab) .

One of the Ramanujan’s remarkable contributions is in the field of continued frac-
tions. An interesting g-continued fraction recorded by Ramanujan on page 299 of
his second notebook [7] is the Ramanujan-Géllnitz-Gordon continued fraction H(q)
given by

8 7.8 7
) @)= (iz(g;(izg))ojo((qflg;[izs))o:o - qm%
_ q'”?
1+q+ ¢ .
1+¢5 + ﬁ

It is worth to mention here that H(q) is a continued fraction of order eight. Gollnitz
[4] and Gordon [5] independently rediscovered and proved (8). Ramanujan also
offered following two theta-function identities [7, p. 299] for H(q):

1 o(q?)
®) o)~ 9= g
and

1 #(q)
(10) 2 9= iy gy

Proofs of (9) and (10) can be found in [2, p. 221]. Baruah and Saikia [1] and Saikia
[8] established some general theorems for explicit evaluations of H(q) and evaluated
some values.

In 2021, Chetry and Saikia [3] obtained four continued fractions Ji(gq), Ja(q),
J3(q) and J4(q) of order thirty-two, which are given by

52T
q3/2(1 — q5)
1 — )1 —q") ;
8(1 — ¢19)(1 — ¢2°
(1 —¢®)(1 + ¢'6) + (f_( qS)(ql _i(q32>i .). .

(1-¢%+

—a7 —
12) ) =g
q"?(1-q")
(1 —q)(1 —¢") ’

. (1 -¢")(1-¢*)
(1_q8)(1+q 6)+ (1_q8)(1+q52)+

(1-¢%+

3 99
13) ) =
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(1 - ¢%)
¢#1-¢)0-4¢")
81— 2D\ (1 — o7
(1 - q8)(1 + q16) + (f_( qS)(ql _|)_(q32)(_]|_ ) .

(1-¢%+

f(_qa _q31)
14 Ju(q) =P 2
( ) 4( ) f(fq15,fq17)

q"*(1 - q)
¢*(1—¢")(1—¢°)
3 23 25
(1 —q¢*)(1—q™)

1— 8 1 + 16 +
(1 =) (1 +¢') -0+
They also established following theta-function and modular identities [3, Theorem
2.1(1)-(v)] for the continued fractions J1(q), J2(q), J3(¢) and J4(q):

(1-¢%+

(15) %@) ~ ) = q?’/?f(f(cJ_lf’_qglljf)((b(Z?q”)’
R
(17) %@) ~ 50 = q5/2f(i(q_3fliq_zg)1fl()ﬂqu?—qlg)’
19 D = i e ]

and

5t -0) ().

By proving dissection formulas, Chetry and Saikia [3] showed that, if

3/2 (= —¢") 5~ S o
JHq)=q 32 (q) = 212" L =Ny and 7y = 2 bad”
1 (Q) q 1(Q) f(—q”, _q21) nZO nd Jf(Q) 7;) "

then
aten+14 =0 and  biguy1 = 0.

In this sequel, we establish some new theta-function identities for the continued
fractions Ji(q), J2(q), J3(q) and J4(g) in Section 2 of this paper. In Section 3, we
obtain partition-theoretic results from the theta-function identities of the continued
fractions by using colour partition of integers. Section 4 is devoted to proving general
theorems to find explicit values of the four continued fractions. Finally, in Section 5,
we obtain some vanishing coefficient results for the continued fractions J2(q), J3(q)
and J4(q) with the help of dissection formulas.
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2. New theta-function and modular identities

Theorem 2.1. We have

)Ly g = — Jh o)
O T T = R, )
o ila.a)0( ")
U Tt T = R o)
o1 i, ”>¢< v)
W 5@ TP = R e

f(q7,q9)¢(*q8)
a7 (—q, —¢"*)¥(¢'6)’
1 1 _ 0(d®)o(q") (¢(a) — 6(a*))
) (W - Js(q)> - (T(q) B Jl(q)) 2072 (q") (B (qt)
N 1 _ 0(g*)olg") (8(q) + o(q*))
(vi) (T@) - J4(q)) B (T(q) % )) C20729(q %)y (q®)Y(gh)
1 1 (=)o (—gMi(—¢*, —¢')
(vid) (m ~Jsla)) + (m - 1(@) = B2 () (g (—q)
(=)o (—gMi(—¢%, —¢")

o -
(iv) 5D + Ju(q) =

1 1
©i) (G = "0)+ (5 = 0) = i@
Proof. From (11) we obtain

)+q3/2f( %, ")
(20) + VJ .
v \/q /Zf( 7, —*)f(—q", —¢*)
From [2, p. 46, Entry 30 (ii) and (iii)], we note that
(21) f(a,b) = §(a’b, ab’) + af(b/a,a’0?).
Setting a = ¢*/? and b = —¢'%/? in (21), we obtain
(22) f(a*2 =a"?) = §(=¢"". =¢*") + ¢**H(~d". —¢*").
Again, from [2, p. 46, Entry 30 (i)], we note that
(23) f(a,ab®)j(b, a*b) = f(a, b)v(ab).
Setting a = —¢° and b = —¢'! in (23), we obtain
(24) f(=a’, —¢"Di(=a"", —¢*") = §(=¢", —a")¥(d"°).
Employing (22) in (20), we find that
1 f(q3/2, _q13/2)
(25) —— V) = —= =
V(g) V(= —")(q')

Squaring (25), we obtain

1 f2(q%/2, —q*%/?)
4 Ji(g) =
T @) 2=, —q")(q)
From [2, p. 46, Entry 30 (v),(vi)], we note that
(27) P(a,b) = f(a?,b%)p(ab) + 2af(b/a, a’b)y(a’b?).

(26) —2.
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Setting a = ¢*/? and b = —¢'*/? in (27), we obtain
(28) (q*%,—¢"%) = 16, ") (= %) + 2¢**§ (=", —¢" ) (¢"°).

Employing (28) in (26), we arrive at (i). Similarly, we can prove (ii)-(iv). Setting
a=—¢> and b = —¢'3 in (23), we obtain

(29) i(=¢*, —a*)i(=4", —4") = (=4, =¢"*)(¢"°).
Rewriting (15) and (17) using (24) and (29), we have

1 (= —=d")e(q®)
30) Hw M Er s, e
and

I =’ —")e(—¢")
(31) B "= g, —q")¥(q'%)’

respectively. From (30) and (31), we have

@ (g —4w) - (55 -4)
¢(q8){f2(—q5, —q') — ¢f*(—¢*, —q13)}

2¢O (=g, —¢*3)f(—¢>, —¢*)
Setting a = —¢°,b = —¢'! and a = —¢>,b = —¢'3 in (27), we obtain

(33) (¢ —a'") = 14", ¢*)e(d'%) — 2¢°1(d°, ¢*°)¥(¢™)
and

(34) (¢°, —4") = #(¢°, )0 (¢"°) — 2¢°1(¢"%, )0 (™),
respectively. Setting a = —¢> and b = —¢° in (23), we obtain

(35) f(—¢* —¢")f(—=¢", —¢'") = {(=¢*, —a*)v(d?).

Employing (33)-(35) in (32), we obtain

3 (G- h@) - (55— 40)

¢>(q8){ (7(a'%,¢*) — ai(4®, 4*)) (¢(a"%) + 24" (¢*)) }
2P (q"0) (=4, —a°)¥(e®) '
Setting @ = —¢ and b = —¢" in (21), we obtain

(37) f(—q.—q") = f(¢"%, ¢**) — 4f(¢®, ¢*°).
From [2, p. 40, Entry 25 (i) and (ii)], we note that

(38) o(g*) + 2q(¢%) = é(q)

and

(39) #(q*) — 2q0(¢°) = d(—q).

Replacing ¢ by ¢* in (38), we obtain
(40) $(¢'%) + 24" (¢**) = 6(q").
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Employing (37) and (40) in (36), we have

a (- 8@) - (5 - @)

¢(¢*)o(¢")P*(—a. —4")
¢ 2P(q") (@) (—a, —a°)F(—q. —q7)
From [2, p. 51] (with ¢ by —¢), we note that

2f2( q37_q5)
(42) $(q) +o(d°) = R —
and
2¢f*(—¢,—q")
(43) $(q) — ¢(q*) = s —
Setting a = —¢q, b = —¢> in (23), we obtain
(44) f(=¢,~a)i(~", —a*) = f(~a, ") (d") = ¥(=a)¥(q").
Employing (43) and (44) in (41), we arrive at (v). Proofs of (vi)-(viii) are similar to
the proof of (v), so we omit. O

Theorem 2.2. For any positive integer n, we have

(i) @) = { AN o=l e

() @3-y = { L om =0 el )
7).

@i m@neo={ T Zh G,

() @)t = { AN =G edd)

Proof. From (11), we note that

n n _ 3n/2 3n fn( q57_q27) fn(q5 q27)
(45) J(@)J7(—q) = (1) / fr(—q'T, —g2) x (g1, g2
Setting a = ¢°,b = ¢*" and a = ¢*',b = ¢*' in (88) we find that

(46) i a*N)i(=a" —4"") = {(=4"", —=¢"")o(—¢*)
and
(47) fa', *i(—a", —*) = 1(=¢*, —¢"™)o(~q™),
respectively. Employing (46) and (47) in (45), we obtain

n 10 54
(43) @I (-0 = (1) L)

)
= (=12 (),
Noting the fact that 3n/2 is even if n = 0 (mod 4) and odd if n = 2 (mod 4) in

(48), we complete the proof of (i). Proofs of (ii)-(iv) are identical to the proof of (i),
so we omit. O
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3. Partition-theoretic results

At first, we define partition and colour partition of a positive integer. A partition
of a positive integer n is a non-increasing sequence of positive integers, called parts,
whose sum equals n. For example, n = 3 has three partitions, namely,

3, 241, 1+1+1.

If p(n) denote the number of partitions of n, then p(3) = 3. The generating function
for p(n) due to Euler is given by

0o - 1
(49) nzzop(n)q (9o

A part in a partition of n is said to have r colours if each part has r copies and all
of them are viewed as distinct objects. For any positive integers n and r, let p,(n)
denote the number of partitions of n with each part having r distinct colours. For
example, if each part in the partitions of 3 has two colours, say white (indicated by
the suffix w) and blue (indicated by the suffix b), then the number of two colour
partitions of 3 is 10 (that is, p2(3) = 10), namely 3., 3p, 24 + lu, 24 +
oy 2p+1p, 2p+1y, ly+ly+ly, lut+tle+ly, lut+lp+1y, Tp+1p+1.
The generating function of p.(n) is given by

= 1
(50) pr(n)q" = —— -
,;) ' (@ 9)%
Also, for positive integers s, m and r, the quotient
1
(51) rrRpr——
(€% 4™)%

is the generating function of the number of partitions of n with parts congruent to
s modulo m and each parts having r distinct colours. For example,

1 1
(@505 (@25 0™)5% — (¢°1,¢259™)k
is the generating function of the number of partitions with parts congruent to s; or

s9 modulo m and each part has ¢ distinct colours.
In this section, for convenience we will use the notation

(53) (@F:d") = (¢" 4" "1 4") o0,

where r and ¢ are positive integers and r < .

(52)

Theorem 3.1. Let Ci1(n) denote the number of partitions of n into parts congru-
ent to £3,£5,£13 or £16 (mod 32) such that the parts congruent to +5 and +16
(mod 32) have 2 colours. Let Ca(n) denote the number of partitions of n into parts
congruent to £3,£11, £13 or £16 (mod 32) such that parts congruent to £11 and
+16 (mod 32) have 2 colours. Let C3(n) denote the number of partitions of n into
parts congruent to +£5,+£8 or 11 (mod 32) with 2 colours. Then for any integer
n >3,

Ci(n) — Ca(n —3) — C3(n) = 0.

787
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Proof. Employing (3), (7) and (11) in (15) and simplifying, we obtain
(qlli;qu)oo 7q3/2 (q5:|:;q32)OO B (q ’ql?d: 32)00( 16:|:7q )
(7 %) oo (@"%563)00 A32(PF, M5 ¢%32) o (¢35 D)%
Dividing (54) by (¢35 113+, 032y (g16+ 432)2 " we obtain
1 7 7

(PEBBE; 32)_(PEIE, g32)2 — (BEIBE g32) (11165, ¢32)2

1
7(q5i,8i,11i;q32)go =
The above quotients of (55) represent the generating functions for C;(n), C2(n) and
Cs(n), respectively. Hence, (55) is equivalent to

(56) ch(nq —q3zc2 n)q" —ch =0,

where we set C; (0) = C2(0) = C3(0 ) =1 Equatlng coefficients of ¢" on both sides
of (56), we arrive at the desired result. O

(54) =0.

(55)

Example: .
TABLE 1. The case n = 5 in Theorem 3.1.

G5 =2 [GE=0] GO =2
5y 5,
59 59

Theorem 3.2. Let Ci1(n) denote the number of partitions of n into parts congru-
ent to +1,+7,+15 or £16 (mod 32) such that the parts congruent to £7 and +16
(mod 32) have 2 colours. Let Ca(n) denote the number of partitions of n into parts
congruent to £1,£9, £15 or 16 (mod 32) such that parts congruent to +9 and +16
(mod 32) have 2 colours. Let C3(n) denote the number of partitions of n into parts
congruent to £7,£8 or £9 (mod 32) with 2 colours. Then for any integer n > 1,

Cl(n) — CQ(TL — 1) — Cg(n) =0.
Proof. Employing (3), (7) and (12) in (16) and simplifying, we obtain

(57) (4" 4%) o0 2 (@60 (¢F,4"%;¢% ) (4" ¢%)%
ql/Z(q7j:; 52) (q9i. 32) 1/2( 7+ qE):t ) (q8:t’q32)
Dividing (57) by (¢'=7595:15%; ¢32)  (¢1%%, ¢32)2,, we obtain
1 q
58 -
( ) (qli,lf)i; q32)oo(q7i’16i; q32)go (qli,lf)i; q32)oo<q9i,16:t; q32)go
1

(¢TE8E9%E; g32)2

The quotients of (58) represent the generating functions for Cq(n), C2(n) and C3(n),
respectively. Hence, (58) is equivalent to

(59) D Cin)g =g Ca(n)g" = Cs(n)g" =0,
n=0 n=0 n=0

where we set C1(0) = C2(0) = C3(0) = 1. Equating coefficients of ¢" on both sides
of (59), we arrive at the desired result. O
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Example:
TABLE 2. The case n = 7 in Theorem 3.2.

Ci(7) =3 C2(6) = 1 C3(7) =2
7, T+1+1+1+1+1 7,
79 79
T+1+i+1+1+1+1

Theorem 3.3. Let Ci1(n) denote the number of partitions of n into parts congru-
ent to £3,£5,£11 or £16 (mod 32) such that the parts congruent to +3 and +16
(mod 32) have 2 colours. Let Ca(n) denote the number of partitions of n into parts
congruent to £5,£11, £13 or £16 (mod 32) such that parts congruent to £13 and
+16 (mod 32) have 2 colours. Let C3(n) denote the number of partitions of n into
parts congruent to +£3,+8 or +£13 (mod 32) with 2 colours. Then for any integer
n>9,
Ci(n) — Ca(n —5) — C3(n) = 0.
Proof. Employing (3), (7) and (13) in (17), we obtain
(@556 572 (6*F56%)oo
PP | 0P
(@°F, 117 ¢32) o0 (¢10F; ¢32)?
) ; ) oo
PP ¢ ) (D)%
Dividing (60) by (g>*°% 11413+, q32)oo(q16i,q32)c2>o7 we obtain
1 7
(¢FETTE; 32)  (PET6E 32)2  (PETTE, 32) (¢ 13516%; (32)2

1

—— - - =0.
(FESE13E, 32)2

(60)

(61)

The above quotients of (61) represent the generating functions for C;(n), C2(n) and
Cs(n), respectively. Hence, (61) is equivalent to

(62) Y Ci(n)g" = ¢ Ca(n)g" =) Ca(n)g" =0,

n=0 n=0 n=0
where we set C1(0) = C2(0) = C3(0) = 1. Equating coefficients of ¢" on both sides
of (62), we arrive at the desired result. O
Example:

TABLE 3. The case n = 8 in Theorem 3.3.

Ci(8) =2 |Ca(3)=01C3(8) =2
5+ 3, 8,
5+ 34 8g

Theorem 3.4. Let Ci(n) denote the number of partitions of n into parts congruent to
+1,4+7,49 or £16 (mod 32) such that the parts congruent to £1 and £16 (mod 32)
have 2 colours. Let Ca(n) denote the number of partitions of n into parts congruent
to £7,+9,£15 or £16 (mod 32) such that parts congruent to £16 (mod 32) have
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2 colours. Let Cs(n) denote the number of partitions of n into parts congruent to
+1,48 or £15 (mod 32) with 2 colours. Then for any integer n > 7,

Ci(n) — Cao(n —7) — C3(n) = 0.
Proof. Employing (3), (7) and (14) in (18) and simplifying, we obtain

) (5% ¢2) B q7/2 (0 %)
q"2(¢"%; ¢%?) 0 (¢"%:¢%?) o
(g™ ¢ ) (¢"%%; 32)2
5/2( 1+ q15:t ) (q )2
Dividing (63) by (g 1,794,154, %) oo (qmi 32 2 , we obtam
1 7
(64) d

(q7i Qj: ) (qli 16+. q32)go o (q7i,9j:,15i; q32)oo(q16i§ q32)<2>o

1

- =0.
(g1 =5 15%; 32)2

The above quotients of (61) represent the generating functions for C;(n), C2(n) and
Cs(n), respectively. Hence, (61) is equivalent to

o0
(65) > ain)g —q7zcg n)q" —ch =0,
n=0
where we set C1(0) = C2(0) = C3(0 ) = 1. Equating coefficients of ¢ on both sides

of (65), we arrive at the desired result. g

Example:
TABLE 4. The case n = 7 in Theorem 3.4.

Ci(7) =2 Co(0) =1 Cs(7) =
7 14+14+1+1+14+1+1
1+14+14+14+14+141

Theorem 3.5. Let Ci(n) denote the number of partitions of n into parts congruent
to£1,4+3,£5+7,£11 or £13 (mod 32) such that the parts congruent to £1 and £7
(mod 32) have 2 colours. Let Ca(n) denote the number of partitions of n into parts
congruent to £1,4+3,£5+9,+11 or =+ 13 (mod 32) such that parts congruent to
+1 and £9 (mod 32) have 2 colours. Let C3(n) denote the number of partitions of
n into parts congruent to +3,+5 +7 +11,+£13 or + 15 (mod 32) such that parts
congruent to £7,£15 (mod 32) have 2 colours. Let C4(n) denote the number of par-
titions of n into parts congruent to £3,£5,+9, £11,+13 or £15 (mod 32) such that
parts congruent to £9,+15 (mod 32) have 2 colours. Let Cs5(n) denote the number of
partitions of n into parts congruent to +1, £3,+5, £7, 49 or £15 (mod 32) such that
parts congruent to £3,+5 (mod 32) have 2 colours. Let Cg(n) denote the number of
partitions of n into parts congruent to +£1,+3,+7,+9,+11 or + 15 (mod 32) such
that parts congruent to £3,£11 (mod 32) have 2 colours. Let Cz(n) denote the num-
ber of partitions of n into parts congruent to £1,£5,£7,49,4+13 or 15 (mod 32)
such that parts congruent to £5,4+13 (mod 32) have 2 colours. Let Cg(n) denote
the number of partitions of n into parts congruent to £1,+7,+£9,+11,+13 or £15
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(mod 32) such that parts congruent to 11,413 (mod 32) have 2 colours. Then for
any integer n > 8,

Ci(n) —Ca(n — 1) = C3(n — 7) 4+ C4(n — 8) — C5(n) + Cs(n — 3)
+C7(n —5) — Cs(n —8) = 0.
Proof. Employing (3), (7) and (11)-(14) in (19) and simplifying, we obtain

(q9i,151;q32)00 B (q7i,15i;q32)oo B qS(qli,S)i;qSQ)oo
q4(qli,7i; q32)OQ q3(qli,9i; q32)oo (q7i,151; q32>oo

(66)

0T 32) oo - (g3, 32) . (5135 32
(¢9E15%; g32) A (PESE 32) q(qSi,lli; %)
APFFE ) AP B

=0.

bl

2o
(q5:|:,13:t; (]32)0O (qllzl: 13+, q32)

D1V1d1ng (66) by (qli,?’i,5i,7i,9i,11i,13i,15i; q32)oo; we obtain

1 q
67 —
(67) (PESETEDE, (32) (17, 432)2 (PESEIEDE, (32) (19, (32)2

q’ ¢

- +
(q3i,5i,1li,13i; q32)w(q7i715i; q32)go (qSi 5+,11+,13+. q32) (q9i715i; q32)go
1 q3
- +
(qli,7i,gi,15i; q32)oo<q3i,5i; ‘132)20 (qliji,gi,wi 2) ( 35,114, 932)30
5 8
q“‘ q _
(qu: 74,94, 15:t ) (q5:t 13+. q32)00 (qu:,7:t,9:t,15:|:; q32)oo(q11:t,13:t; q32)go

+

The above quotients of (67) represent the generating functions for Ci(n), Ca(n),
Cs(n), Ca(n), Cs5(n), C¢(n), Cr(n) and Cg(n), respectively. Hence, (67) is equivalent
to

(68) ch n)g" —qZCz n)q" —q ch n)g" +q8204(n

n=0

—265(n)q"+q3206 n)q" +q5ZC7 n)q" —q*»_ Cs(n)g" =

n= n=0 n=
where we set C1(0) = C3(0 ) = C3(0) = C4(0) = C5(0) = C6(0) = C7(0) = Cs(0) =
Equating coefficients of ¢™ on both sides of (68), we arrive at the desired result. O

Example: To illustrate Theorem 3.5 consider the case n = 8. By enumerating the
relevant partitions, once can see that C1(8) = 27, Co(7) = 18, C3(1) = 0, C4(0) =1,
C5(8) =13, C(5) = 3, C7(3) = 1 and Cg(0) = 1.

Theorem 3.6. Let Ci(n) denote the number of partitions of n into parts congruent to
+5,46,£8 or 16 (mod 32) such that the parts congruent to £5 and +8 (mod 32)
have 2 colours. Let Ca(n) denote the number of partitions of n into parts congruent
to +6,+8,+11 or £16 (mod 32) such that parts congruent to £8 and £11 (mod 32)
have 2 colours. Let C3(n) denote the number of partitions of n into parts congruent
to £3,4+5,+11 or + 13 (mod 32) such that the parts congruent to 5 and + 11
(mod 32) have 2 colours. Then for any integer n > 3,

Ci(n) 4+ Ca(n —3) — C3(n) = 0.
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Proof. Employing (4), (6), (7) and (11) in Theorem 2.1 (i) and employing the same
procedure, we obtain

1 3
(69) 64, 16i 54,8+, 132 + 6+,164. 32 ? 8+,11+. ,32)2
(q 7*?)(q 1q32)%, 0 (¢5F10F; ¢32) o (¢85 11 ¢32) 2
1
=0.

- (qBi,l?)i; q32)oo(q5i,11i; qsz)go

The above quotients of (69) represent the generating functions for C;(n), C2(n) and
Cs(n), respectively. Hence, (69) is equivalent to

(70) ch(nq +QSZC2 n)q" —ZC:’) =0,

where we set C1(0 ) = C2(0) = C3(0 ) =1 Equatlng coefficients of ¢" on both sides
of (70), we arrive at the desired result. g

Example:
TABLE 5. The case n = 11 in Theorem 3.6.

Cl(I) =2[CB) =2 | C3(11) = 4
6+ 5r 8, 11,
6+ 5, 84 11,

5 +3+3
5y +3+3

Theorem 3.7. Let Ci(n) denote the number of partitions of n into parts congruent to
+2,4+7, +£8 or +16 (mod 32) such that the parts congruent to +7 and +8 (mod 32)
have 2 colours. Let Ca(n) denote the number of partitions of n into parts congruent
to £2, 48,49 or £16 (mod 32) such that parts congruent to £8 and +9 (mod 32)
have 2 colours. Let C3(n) denote the number of partitions of n into parts congruent to
+1,4+7,4£9 or £15 (mod 32) such that the parts congruent to £7 and +£9 (mod 32)
have 2 colours. Then for any integer n > 1,

Cl(n) + CQ(TL — 1) — Cs(n) =0.
Proof. Employing (4), (6), (7) and (12) in Theorem 2.1 (ii) and employing the same
procedure, we obtain
1 q
(2H16%; 32) (qT53%; g32)2, + (2E16%; 32 (559%; 432)2

1
(155 32)  (qT59%; ¢32)2,

(71)

=0.

The above quotients of (71) represent the generating functions for C;(n), Co2(n) and
Cs(n), respectively. Hence, (71) is equivalent to

(72) ZC1 n)q" +QZC2 (n)q" fzcg(n

where we set C; (0) = C2(0) = C3(0 ) =1 Equatlng coefficients of ¢" on both sides
of (70), we arrive at the desired result. O
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Example:
TABLE 6. The case n = 9 in Theorem 3.7.

Ci(9) =2 C2(8) =3 C3(9)=5

T+ 2 8 9,

Tg+2 8 9y
2424242 r+1+1
Tg+1+1

1+1+14+14+14+14+14+1+1

Theorem 3.8. Let Ci(n) denote the number of partitions of n into parts congruent to
+3,48,+10 or £16 (mod 32) such that the parts congruent to +3 and £8 (mod 32)
have 2 colours. Let Co(n) denote the number of partitions of n into parts congruent to
+8,£10,£13 or £16 (mod 32) such that parts congruent to +8 and +13 (mod 32)
have 2 colours. Let C3(n) denote the number of partitions of n into parts congruent
to £3,45,4+11 or =+ 13 (mod 32) such that the parts congruent to +3 and + 13
(mod 32) have 2 colours. Then for any integer n > 5,

Ci(n) 4+ Ca2(n —5) — C3(n) = 0.

Proof. Employing (4), (6), (7) and (13) in Theorem 2.1 (iii) and employing the same
procedure, we obtain

1 n q°

(q10F 16, 32) _(PESE; 32)2 1 (qI0ET6%, (32) (8% 135, (32)2

(73)

1

— =0.
(FET1E; 32) o (PE 3%, g32)2

The above quotients of (73) represent the generating functions for C;(n), C2(n) and
Cs(n), respectively. Hence, (73) is equivalent to

(74) > Cn)g" +q° ) Can)g" = Ca(n)g" =0,
n=0 n=0 n=0
where we set C1(0) = C2(0) = C3(0) = 1. Equating coefficients of ¢" on both sides
of (74), we arrive at the desired result. O
Example:

TABLE 7. The case n = 13 in Theorem 3.8.

Ci(13) =2 C(8) =2 Cs3(13) =4
10 + 3, 8, 9,
Ty + 2 84 9,
2+2+2+2 T+ 1+1
Ty+1+1
T+l4+14+1+1+14+1+1+1

Theorem 3.9. Let Ci(n) denote the number of partitions of n into parts congruent to
+1,48,4+14 or £16 (mod 32) such that the parts congruent to £1 and £8 (mod 32)
have 2 colours. Let Ca(n) denote the number of partitions of n into parts congruent to
+8,4+14,£15 or £16 (mod 32) such that parts congruent to £8 and £15 (mod 32)

793
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have 2 colours. Let C3(n) denote the number of partitions of n into parts congruent
to £1,£7,4£9 or £ 15 (mod 32) such that the parts congruent to £1 and =+ 15
(mod 32) have 2 colours. Then for any integer n > 7,

Ci(n) 4+ Co(n —7) — C3(n) = 0.
Proof. Employing (4), (6), (7) and (14) in Theorem 2.1 (iv) and employing the same
procedure, we obtain

1 q7
+
(qUE 165, 32) (q1H8%; 32)2 T (q4516%, (32 ((8H15%, (32)2

(75)

1
(q7iQi 0%2) oo (g1 H15%; ¢32)2

=0.

The above quotients of (75) represent the generating functions for C;(n), Ca(n) and
Cs(n), respectively. Hence, (75) is equivalent to

(76) ch Q+q7202 g" = Cs3(n)g" =0,
n=0

where we set C1(0) = C2(0) = C3(0) = 1. Equating coefficients of ¢™ on both sides
of (74), we arrive at the desired result. O

Example:
TABLE 8. The case n = 8 in Theorem 3.9.

Ci(8) =11 Ca(1) =0 C3(8) =11

8, 741,

8, T4+1,
Lr+lr+ L+ 1+ 1+ 14+ 1, + 1, Lr+lr+ L4+l + 1+ 14+ 1, + 1,
Lot 1o+ 1o+ 1+ 1+ 1+ 1, + 1 Lot 1+ 1o+ 1+ 1+ 1+ 1, + 1
Lt e+ 1o+ 1p+ 1+ 14 15 + 1 Lt Lot le+ 1+ 1+ 14+ 15 + 1
Lt le+ L4+ 1, +1,4+15+1, Lt le+ 14+l + 1,411,415+ 1,
Lot 1o+ 1o+ 1+ 1+ 1+ 15 + 1, Lot 1o+ 1o+ 1p 4+ 1+ 1+ 15 + 1,
Lidlp+le+1g+1g+1g+ 1,41, Lidlp+le+1g+ 15415+ 1,414
Led e+ ly4+1g+1,4+1g+1,+1, Lid e+l +1g+1,+1g+1,+1,
Lidlyg+ly4+1lg+1,4+1g+1,+1, Lidlyg+ly4+1g+1,4+1g+1,+1,
Tyg+ly+lg+1,+1g+1,+15+1, Tyg+ly+lg+1,+1g+1,+15+1,

4. General theorems for explicit values of J;(¢),i = 1,2,3,4

In this section, we offer general theorems to find explicit values of J1(q), Ja2(q),
J3(q) and J4(q). Here it is useful to note the following two continued fractions of
order twenty-four from [6]:

f(_ ’ 15)
77 M(q) := q3/ ERANEE LA 4
() @ f(=a",—¢%)
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B ¢**(1—q)
g (11— 1)
(1 q ) + (1 B q4)(1 R qs) . q4(1 — qll)(l _ q13)
(1 =g (1+q'%) + -
and
. 1/2f(_q35 —q")
(78) N(q):==¢q E—
_ ¢"2(1 - ¢%)
B (1 gt ¢'(1-¢)(1 —q")

*(1—¢")(1—¢")
(I—g)(1+q"0)+ -

(1-gH(1+¢®) +

Theorem 4.1. We have

1 1
. _ —m/n/4 _ —m\/n/4 _ —m/n
() iy — ™ = N (G = H ™M),
1 1
.. _ —m/n/4 — —m\/n/4 _ —m/n
(1) gy = e = MY (e~ HE),
1 1 1
i) ———  Ja(e~ VN4 = _ —my/n
(Z”) Jg(eiﬂ—\/ﬁ/ll) *]3(6 ) N(eiﬂ—\/ﬁ/zl) <H(€77T\/77) H(e ))7
1 1 1
) ——M —my/n/4y _ _ —my/n
(i) S vy — Jate )= AV ( H{emvmy 1 ).
Proof. Employing (24) in (15) and then employing (9) and (78), we obtain
(79 T =) = N0 (g — )
Tila) H(q") '
Setting ¢ = e~™V™/* in (79), we arrive at (i). Proofs of (ii)-(iv) are follow identically
from (16)-(18), respectively. O

Remark 4.2. From Theorem 4.1, it is easily seen that to evaluate the explicit values
Ji(e7 ™V | Jo(e ™A Ja(e VY and Jy(e ™) it is sufficient to know the
values of M(e~™™4), N(e=™™4) and H(e~™"). In [6], authors proved some
general theorems for the explicit values of M (q) and N(q) and evaluated some explicit
values. For example, they evaluated

(80) M= [

C 938142
—\/2 <2 +25/4 4 2¢/2 + 23/4 — 23/8\/4 +29/4 4 4V2 43 23/4>]

and

1
(81) N =3 [25/8\/ 1+ V2 — 24 /4 4 25/4 4 93/4

+\/4 + (25841 + V2 — 21/ /4 4 25/4 + 23/4)2],
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Baruah and Saikia [1] evaluated explicit values of H(e~™™). For example,

(82) HEe ™) =1/22+V2) —1-V2.

Takingn = 1, employing (81) and (82) in (i) and then solving the resulting quadratic
equation, we obtain

(83) Ji(e7™h) = %[(1 +2) (21/4951 —25/84/1 + \/5)
—(2+ V2)V 25 — 278y + (4 + ((1 +V2) (25/8\/1 +V2- 21/4x1)
+(2+ \/_)‘ /2xs — 27/8$2) )1/2}

Again, employing (80) and (82) in (i) and then solving the resulting quadratic
equation, we obtain

1
(81) B =3[ -2-27F 14+ V242, 2151/ (1+ V2) (w4 — 29/8)a,
2
+\/4 + (2 278\ 14V2 -2 21/8\/(1 +V2)(z4 — 23/8x2)> ]
=VA4+25/4 4234 zy= \/4+4‘25/4+4\/§+3-23/4,

3 =1+2"4 4+ V2424 and wq4=2+2-2/4 4 2v2 + 23/4,
To choose the appropriate root of the quadratic equation, we used the fact that
J1(q) = ¢*?(1 — ¢®)(1 + ¢®) by neglecting terms involving ¢'® or higher powers of q
as |q| < 1. Similarly, one can calculate explicit values of J3(e~™/*) and Jy(e ™ ™*)
by using Theorem 4.1 (#i) and (iv), respectively.

where

5. Vanishing coefficient results

In this section, we obtain vanishing coefficient results from the continued fractions
J2(q), J3(q), Ja(q) and their reciprocals.

Theorem 5.1. If
B0 = () = L) anq and =S K

then
(i) kion+3 =0 and (ii) Kigniq =0.
Proof. Write

(85) anq 9, qu) _ f(—q;, —qu)f(qz, qzz).
@, —q*)  §(—q° —q*) f(¢° ¢*)
From [2, p. 45, Entry 29], we note that, if a, b, c and d are complex numbers satisfying
ab = cd, then
(86) f(a,b)f(c,d) = f(ac, bd)f(ad, bc) + af(b/c, ac*d)§(b/d, acd?).
Setting a = — —¢*,c=¢",d = ¢** in (86), we obtain

q",b=—q
(87) f(—a", —a®)f(a’, ¢**) = §(—=¢'%, —¢**)}(—¢*, —¢**)
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—q"§(=4"%, =) (~a*, ™).
Again, from [2, p. 46, Entry 30 (iv)], we note that

(88) f(a,0)f(—a, —b) = f(—a®, —b*)p(—ab).
Setting a = ¢° and b = ¢*® in (88), we obtain
(89) f(@”, a*)i(=¢", =a*) = {(=¢"%, —a"*)¢(—¢™).

Employing (87) and (89) in (85), we obtain

(90) i pog — JCL0 = a", —a*) — aT5(=a"%, —a")f(=a?, —¢™)
f(—q'%, —q*%)d(—q?)

Extracting the terms involving ¢?"*! in (90), dividing by ¢ and replacing ¢ by q,

we obtain

- n_ af(=d% —*)i(—q, —¢*)
oy 2 Ranend” = =0 g
:7q(q7—q)( a*")f(a% ¢**)
f(—a%, —a**)§(a, ¢**)d(—q*®)
Setting a = —q, b= —¢3!, c = ¢° and d = ¢*3 in (8 6), we obtam
(92) f(=a, —¢*")i(¢", ¢**) = f(*q —"Hf(=*, —4")

~af(—4*, —¢"*)i(~a", —a).
Applying (92) and (89) in (91), we have

> _ .8 _ 24
(93) Z k2n+1qn = _q3 f(*qls, f;46q)¢7((216))¢(q32) {f(_qloa _q54)f(_q247 _q40)

—af(—q*%, —q**)f(—¢®, —q56)}~

2n+1 i

Again, extracting the terms involving ¢ n (93), dividing by ¢ and replacing ¢?

by ¢, we obtain

- no__ f(_q4a _q12)f(_q57 _q27)f(_q12a
oy R e e e ey
f(—a*, —4")f(=4"* —¢*)i(—=a*, —¢*")f(¢’, ¢**)

f(=¢?, —¢*)i(¢?, %) d(—q®) (—4'°) '
,c=q° and d = ¢* in (86), we obtain
(95) f(=a® =M@’ ¢*) = {(=¢"*, =" (=¢**, —¢*)
—¢*f(=4"%, —¢")f(=q", —¢).
Applying (95) and (89) in (94), we have

- n __ _qf(_q47_q12)f(_ _q )
(96) nz:%kzmﬁq T =g, =) b (—¢®)p(—q'0)p(— 32){f( q"*, —q")

H=a®, =0*) = F(=a", ~)(~a", -4 }.

)

=—q

Setting a = —¢°, b = —¢*7
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Again, extracting the terms involving ¢*" and replacing ¢> by ¢ in (96), we obtain

d(—q*)p(—q®)p(—q'%)

The right hand side of (97) contains no term involving ¢, so extracting terms
involving ¢*" and replacing ¢ by ¢, we arrive at (i). Similarly, we obtain (ii). O

S f(—¢2, —¢%)§f(—q% —a'")f(—¢?, —¢*°)
(97) ksni3q" = ¢ )
n;] 8n+3

In next theorems, we offer vanishing coefficients arising from the continued frac-
tions J3(¢) and J4(g). Since the proofs are identical to the proof of Theorem 5.1, we
only state the results and omit proofs.

Theorem 5.2. If

J*( ) —5/2J ( ) f(7q3a 7(]29) i B g™ d 1 ih/ n
q):=q 3(9) = —3 1oy = ng" and — = = nd"
’ P T (=g, —g) T &~ Tile) =

then

!
hi6n+5 =0, and  hig,i19 = 0.

Theorem 5.3. If

J* o *7/2‘] o f(_qv _q31) o — n d 1 o — I n
1(0) ==q 4(Q)_W_Zgnq an m_zgnq )
’ n=0 n=0

then

/!
gi6n+g = 0, and J16n+15 = 0.
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